Polymeric Nanomaterials in Nanotherapeutics
eBook - ePub

Polymeric Nanomaterials in Nanotherapeutics

  1. 558 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Polymeric Nanomaterials in Nanotherapeutics

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Polymeric Nanomaterials in Nanotherapeutics describes how polymeric nanosensors and nanorobotics are used for biomedical instrumentation, surgery, diagnosis and targeted drug delivery for cancer, pharmacokinetics, monitoring of diabetes and healthcare. Key areas of coverage include drug administration and formulations for targeted delivery and release of active agents (drug molecules) to non-healthy tissues and cells. The book demonstrates how these are applied to dental work, wound healing, cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, chronic inflammatory diseases, metabolic diseases, and more. Methods of administration discussed include oral, dental, topical and transdermal, pulmonary and nasal, ocular, vaginal, and brain drug delivery and targeting.

Drug delivery topics treated in several subchapters includes materials for active targeting and cases study of polymeric nanomaterials in clinical trials. The toxicity and regulatory status of therapeutic polymeric nanomaterials are also examined. The book gives a broad perspective on the topic for researchers, postgraduate students and professionals in the biomaterials, biotechnology, and biomedical fields.

  • Shows how the properties of polymeric nanomaterials can be used to create more efficient medical treatments/therapies
  • Demonstrates the potential and range of applications of polymeric nanomaterials in disease prevention, diagnosis, drug development, and for improving treatment outcomes
  • Accurately explains how nanotherapeutics can help in solving problems in the field through the latest technologies and formulations

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Polymeric Nanomaterials in Nanotherapeutics est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Polymeric Nanomaterials in Nanotherapeutics par en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Physical Sciences et Nanoscience. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Elsevier
Année
2018
ISBN
9780128139332
Chapter 1

Polymeric Nanomaterials

Recent Developments, Properties and Medical Applications

Cornelia Vasile, Physical Chemistry of Polymers Department, Romanian Academy, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania

Abstract

The unique physicochemical properties of polymeric nanomaterials (nanoscale size, large surface area to mass ratio, and high reactivity) individualize them in many application fields due to the specific features they offered to systems. Their use in nanomedicine has greatly changed the therapeutic and diagnostic modalities because they are precisely engineered materials at a molecular level. This chapter offers a general view on polymeric nanomaterials, including classification, properties, and a short methodology of characterization, applications, and the state of various nanotherapeutics. Selected types used in the medical field are described in subsequent chapters.

Keywords

Nanotherapeutics; nanomedicine; polymer; polymeric nanomaterials; diagnostic; properties; sheathed technologies

1.1 Introduction

Nanomaterials: in October 2011, the European Commission (EC) recommended to define nanomaterials as “natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate/agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range of 1–100 nm” and the specific surface area/volume of the material is greater than 60 m2/cm3 (EC, 2011; Kreyling et al., 2010). The Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) proposed a limit of 0.15% of nanoparticles below 100 nm for the definition of nanomaterials (SCENIHR, 2010). Nanomaterials can be classified as zero-dimensional, one-dimensional, two-dimensional, or three-dimensional. Nanomaterials possess unique physical (ultrasmall size, large surface area to mass ratio, high surface energy, optical, electrical, magnetic, etc.), chemical (high reactivity), and biological properties, which are different from bulk materials of the same composition. By their characteristics nanomaterials are able to modify the fundamental properties of therapeutic and diagnostic agents and other materials.
Nanotechnology is defined as the science and engineering involved in the design, synthesis, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale (10−9 m). That means it controls, programs, and manipulates matter on the nanometer length scale, that is, at the level of atoms, molecules, and supramolecular structures (i.e., molecular precision).
Nanotechnology applied in biotechnology is called nanobiotechnology (Torchilin, 2014).
Nanomedicine is considered as a subdiscipline within nanotechnology or nanosciences applied in medical sciences and helps in the prevention and treatment of various diseases. Diagnostic uses include for monitoring, repair, construction, and control of human biological systems at the molecular level, using engineered nanodevices and nanostructures (Sahoo et al., 2007). It combines nanotechnology with pharmaceutical and biomedical sciences. Nanomedicine goals are of developing novel therapeutic and diagnostic modalities and imaging agents with higher efficacy and improved safety and toxicological profiles. As a refinement of molecular medicine, nanomedicine integrates advances in genomics and proteomics, facilitating the development of personalized medicine (Jain, 2008; Zhang et al., 2007a).
The benefits of nanomedicine include: effective and less toxic therapeutic interventions, simplified therapeutic procedures, targeted drug delivery, accelerating the healing process, improved patient compliance and quality of patient’s life, reducing the frequency of dosage, minimally invasive method of administration, improved therapeutic outcomes, reducing adverse drug effects, personalized therapy, etc. From an economic point of view the benefits consist of an overall reduction in healthcare costs (e.g., by increasing the drug efficacy, reducing the duration of in-patient care stay, reducing personal healthcare costs, and the effective treatment of expensive major diseases), improving the quality of healthcare services, improved use of costly (bio)pharmaceuticals (e.g., low-dose formulation, improved drug solubility/stability, controlled drug release, improved pharmacokinetic profile, targeted drug delivery).
The integration of diagnostics with therapeutics facilitates the development of personalized medicine, that is, prescription of specific therapeutics best suited for an individual. Nanomedicine uses biomaterials, such as hard tissue implants, bone substitute materials, dental restoratives, soft tissue implants, and antimicrobial materials, drug carriers, etc. (Huber et al., 2009; Wagner et al., 2006c).
The number of academic papers using the term “nanomedicine” has increased exponentially since 2000 (Web of Science) from only a few to over a thousand. The use of nanoparticles (NPs) addresses two of the most important health challenges facing society: cancer treatment and the need for new antimicrobials.
Nanomedicines are defined as nanomaterials for specific diagnostic or therapeutic purposes (Kostarelos, 2006), as therapeutic or imaging agents. Nanomedicines control the in vivo biodistribution, improve targeting, enhance the efficacy, and reduce toxicity of a drug or biologic. It is known that the physiological and pathological processes at the cell level occur on a nanoscale. Nanoscale devices can readily interact with biomolecules (such as enzymes and receptors) on both the surface of the cell and inside the cell. Nanoscale devices are 100–10,000 times smaller than human cells. Therefore, nanoparticles can detect disease at the microlevel, provide detailed information on the progression of disease, and deliver treatment.
The terms nanopharmaceuticals and nanotherapeutics have been introduced, while colloidal systems are redefined as nanosystems, and colloidal drug-delivery systems are called nanodrug-delivery systems.
Nanotherapeutics, including polymeric ones, refers to the use of nanomedicines in areas of drug delivery and therapy conferring additional and unique properties to the drug (Hafner et al., 2014) with regard to bioavailability enhancement (Fakes et al., 2009; Lammers et al., 2012), reduced acute/systemic toxicity (Ando et al., 2011; Rom et al., 2013), or improved therapeutic efficiency by targeting compounds to a specific site of action (Low et al., 2011; Martinez et al., 2014). NPs have improved the bioavailability of drugs compared to their free form, such as cyclosporine (119% of free form) (Italia et al., 2007), estradiol (1014%) (Mittal et al., 2007), doxorubicin (DOX) (363%) (Grama et al., 2011), amphotericin B (793%) (Grama et al., 2011), curcumin (2583%) (Grama et al., 2011), (2200%) (Tsai et al., 2011), (1560%) (Khalil et al., 2013), and lutein (Chen et al., 2016). Nanotherapeutics tools are used to improve drug solubility/diffusivity of poorly water-soluble drugs (including micelles (Pepic et al., 2010) and nanocrystals (Junghanns and MĂŒller, 2008)) to guide drugs to the desired location of action with increased precision (drug targeting (Crielaard et al., 2012;Zhang et al., 2012a)), to control drug release (nanoparticles (Hafner et al., 2009, 2011; Vasile et al., 2015a,b) and liposomes (Pavelic et al., 2005), and/or to enhance transport acro...

Table des matiĂšres

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. List of Contributors
  6. Chapter 1. Polymeric Nanomaterials: Recent Developments, Properties and Medical Applications
  7. Chapter 2. Responsive Polymeric Nanotherapeutics
  8. Chapter 3. Nanorobots With Applications in Medicine
  9. Chapter 4. Polymeric Nanobiosensors
  10. Chapter 5. Nanomaterials Derived From Phosphorus-Containing Polymers: Diversity of Structures and Applications
  11. Chapter 6. Nucleic Acids–based Bionanomaterials for Drug and Gene Therapy
  12. Chapter 7. Electrospun Polymeric Nanostructures With Applications in Nanomedicine
  13. Chapter 8. Nanocoatings: Preparation, Properties, and Biomedical Applications
  14. Chapter 9. Functionalization of Polymer Materials for Medical Applications Using Chitosan Nanolayers
  15. Chapter 10. Magnetic Polymeric Nanocomposites
  16. Chapter 11. Nanogels Containing Polysaccharides for Bioapplications
  17. Chapter 12. Nanomaterials in Tissue Engineering
  18. Chapter 13. Nanoscaled Dispersed Systems Used in Drug-Delivery Applications
  19. Chapter 14. Biological Applications of Nanoparticles in Optical Microscopy
  20. Chapter 15. Regulatory Status of Therapeutic Polymeric Nanomaterials
  21. Abbreviations
  22. Index
Normes de citation pour Polymeric Nanomaterials in Nanotherapeutics

APA 6 Citation

[author missing]. (2018). Polymeric Nanomaterials in Nanotherapeutics ([edition unavailable]). Elsevier Science. Retrieved from https://www.perlego.com/book/1831532/polymeric-nanomaterials-in-nanotherapeutics-pdf (Original work published 2018)

Chicago Citation

[author missing]. (2018) 2018. Polymeric Nanomaterials in Nanotherapeutics. [Edition unavailable]. Elsevier Science. https://www.perlego.com/book/1831532/polymeric-nanomaterials-in-nanotherapeutics-pdf.

Harvard Citation

[author missing] (2018) Polymeric Nanomaterials in Nanotherapeutics. [edition unavailable]. Elsevier Science. Available at: https://www.perlego.com/book/1831532/polymeric-nanomaterials-in-nanotherapeutics-pdf (Accessed: 15 October 2022).

MLA 7 Citation

[author missing]. Polymeric Nanomaterials in Nanotherapeutics. [edition unavailable]. Elsevier Science, 2018. Web. 15 Oct. 2022.