RSM Simplified
eBook - ePub

RSM Simplified

Optimizing Processes Using Response Surface Methods for Design of Experiments, Second Edition

Mark J. Anderson, Patrick J. Whitcomb

  1. 297 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

RSM Simplified

Optimizing Processes Using Response Surface Methods for Design of Experiments, Second Edition

Mark J. Anderson, Patrick J. Whitcomb

Book details
Book preview
Table of contents
Citations

About This Book

This book continues where DOE Simplified leaves off in Chapter 8 with an introduction to "Response Surface Methods [RSM] for Optimization." It presents this advanced tool for design of experiments (DOE) in a way that anyone with a minimum of technical training can understand and appreciate. Unlike any other book of its kind, RSM Simplified keeps formulas to a minimum—making liberal use of figures, charts, graphs and checklists. It also offers many relevant examples, amusing and fun do-it-yourself exercises.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is RSM Simplified an online PDF/ePUB?
Yes, you can access RSM Simplified by Mark J. Anderson, Patrick J. Whitcomb in PDF and/or ePUB format, as well as other popular books in Betriebswirtschaft & Business allgemein. We have over one million books available in our catalogue for you to explore.

Information

Year
2016
ISBN
9781315351728
Chapter 1
Introduction to the Beauty of Response Surface Methods
For a research worker, the unforgotten moments of his [or her] life are those rare ones, which come after years of plodding work, when the veil over nature’s secret seems suddenly to lift, and when what was dark and chaotic appears in a clear and beautiful light and pattern.
Gerty Cori
The first American woman to win a Nobel Prize in science
Before we jump down to ground-level details on response surface methods (RSM), let’s get a bird’s-eye view of the lay of the land. First of all, we will assume that you have an interest in this topic from a practical perspective, not academic. A second big assumption is that you’ve mastered the simpler tools of design of experiments (DOE). (Don’t worry, we will do some review in the next few chapters!)
RSM offer DOE tools that lead to peak process performance. RSM produce precise maps based on mathematical models. This methodology facilitates putting all your responses together via sophisticated optimization approaches, which ultimately lead to the discovery of sweet spots where you meet all specifications at minimal cost.
This answers the question: What’s in it for me? Now let’s see how RSM fits into the overall framework of DOE and learn some historical background.
Strategy of Experimentation: Role for RSM
The development of RSM began with the publication of a landmark article by Box and Wilson (1951) titled “On the Experimental Attainment of Optimum Conditions.” In a retrospective of events leading up to this paper, Box (2000) recalled observing process improvement teams in the United Kingdom at Imperial Chemical Industries in the late 1940s. He and Wilson realized that, as a practical matter, statistical plans for experimentation must be very flexible and allow for a series of iterations.
Box and other industrial statisticians, notably Hunter (1958–1959) continued to hone the strategy of experimentation to the point where it became standard practice in chemical and other process industries in the United Kingdom and elsewhere. In the United States, Du Pont took the lead in making effective use of the tools of DOE, including RSM. Via their Management and Technology Center (sadly, now defunct), they took an in-house workshop called “Strategy of Experimentation” public and, over the last quarter of the twentieth century, trained legions of engineers, scientists, and quality professionals in these statistical methods for experimentation.
This now-proven strategy of experimentation, illustrated in Figure 1.1, begins with standard two-level fractional factorial design, mathematically described as “2k−p” (Box and Hunter, 1961) or newer test plans with minimum runs (noted below), which provide a screening tool. During this phase, experimenters seek to discover the vital few factors that create statistically significant effects of practical importance for the goal of process improvement. To save time at this early stage where a number (k) of unknown factors must be quickly screened, the strategy calls for use of relatively low-resolution (“res”) fractions (p).
A QUICK PRIMER ON NOTATION AND TERMINOLOGY FOR STANDARD SCREENING DESIGNS
Two-level DOEs work very well as screening tools. If performed properly, they can reveal the vital few factors that significantly affect your process. To save on costly runs, experimenters often perform only a fraction of all the possible combinations. There are many varieties of fractional two-level designs, such as Taguchi or Plackett–Burman, but we will restrict our discussion to the standard ones that statisticians symbolize as “2k−p,” where k refers to the number of factors and p is the degree of fractionation. Regardless of how you do it, cutting out runs reduces the ability of the design to resolve all possible effects, specifically the higher-order interactions. Minimal-run designs, such as seven factors in eight runs (27−4)—a 1/16th (2−4) fraction, can only estimate main effects. Statisticians label these low-quality designs as “resolution III” to indicate that main effects will be aliased with two-factor interactions (2FIs). Resolution III designs can produce significant improvements, but it’s like kicking your PC (or slapping your laptop) to make it work: you won’t discover what really caused the failure.
To help you grasp the concept of resolution, think of main effects as one factor and add this to the number of factors it will be aliased with. In resolution III, it’s a 1-to-2 relation, which adds to 3. Resolution IV indicates a 1-to-3 aliasing (1 + 3 = 4). A resolution V design aliases main effects only with four factors (1 + 4 = 5).
Because of their ability to more clearly reveal main effects, resolution IV designs work much better than resolution III for screening purposes, but they still offer a large savings in experimental runs. For example, let’s say that you want to screen 10 process factors (k = 10). A full two-level factorial requires 210 (2k) combinations, way too many (1024!) for a practical experiment. However, the catalog of standard two-level designs offers a 1/32nd fraction that’s resolution IV, which will produce fairly clear estimates of main effects. To most efficiently describe this option mathematically, convert the fraction to 2p (p = 5) scientific notation: 2−5 (=1/25 = 1/(2 × 2 × 2 × 2 × 2) = 1/32). This yields 210−5 (2k−p) and by simple arithmetic in the exponent (10 − 5): 25 runs. Now, we do the final calculation: 2 × 2 × 2 × 2 × 2 equals 32 runs in the resolution IV fraction (vs. 1024 in the full factorial).
P.S. A more efficient type of fractional two-level factorial screening design has been developed (Anderson and Whitcomb, 2004). These designs are referred to as “minimum-run resolution IV” (MR4) because they require a minimal number of factor combinations (runs) to resolve main effects from 2FIs (resolution IV). They compare favorably to the classical alternatives on the basis of required experimental runs. For example, 10 factors can be screened in only 20 runs via the MR4 whereas the standard (2k−p) resolution IV design, a 1/32nd (2−5) fraction, requires 32 runs.
Along these same lines are minimum-run resolution V (MR5) designs, for example, one that characterizes six factors in only 22 runs versus 32 runs required by the standard test plan.
Image
Figure 1.1 Strategy of experimentationStrategy of experimentation.
After throwing the many trivial factors off to the side (preferably by holding them fixed or blocking them out), the experimental program should enter the characterization phase where interactions become evident. This requires higher-resolution, or possibly full, two-level factorial designs. By definition, traditional one-factor-at-a-time (OFAT) approaches will never uncover interactions of factors that of...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface
  7. Authors
  8. 1 Introduction to the Beauty of Response Surface Methods
  9. 2 Lessons to Learn from Happenstance Regression
  10. 3 Factorials to Set the Stage for More Glamorous RSM Designs
  11. 4 Central Composite Design: Stars Added—RSM Show Begins
  12. 5 Three-Level Designs
  13. 6 Finding Your Sweet Spot for Multiple Responses
  14. 7 Computer-Generated Optimal Designs
  15. 8 Everything You Should Know about CCDs (but Dare Not Ask!)
  16. 9 RSM for Six Sigma
  17. 10 Other Applications for RSM
  18. 11 Applying RSM to Mixtures
  19. 12 Practical Aspects for RSM Success
  20. Glossary
  21. References
  22. Index
  23. About the Software
Citation styles for RSM Simplified

APA 6 Citation

Anderson, M., & Whitcomb, P. (2016). RSM Simplified (2nd ed.). Taylor and Francis. Retrieved from https://www.perlego.com/book/1575775/rsm-simplified-optimizing-processes-using-response-surface-methods-for-design-of-experiments-second-edition-pdf (Original work published 2016)

Chicago Citation

Anderson, Mark, and Patrick Whitcomb. (2016) 2016. RSM Simplified. 2nd ed. Taylor and Francis. https://www.perlego.com/book/1575775/rsm-simplified-optimizing-processes-using-response-surface-methods-for-design-of-experiments-second-edition-pdf.

Harvard Citation

Anderson, M. and Whitcomb, P. (2016) RSM Simplified. 2nd edn. Taylor and Francis. Available at: https://www.perlego.com/book/1575775/rsm-simplified-optimizing-processes-using-response-surface-methods-for-design-of-experiments-second-edition-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Anderson, Mark, and Patrick Whitcomb. RSM Simplified. 2nd ed. Taylor and Francis, 2016. Web. 14 Oct. 2022.